Heights, algebraic dynamics and Berkovich analytic spaces
نویسنده
چکیده
The present paper is an exposition on heights and their importance in the modern study of algebraic dynamics. We will explain the idea of canonical height and its surprising relation to algebraic dynamics, invariant measures, arithmetic intersection theory, equidistribution and p-adic analytic geometry. AMS Classification 2000: Primary: 14G40; Secondary: 11G50, 28C10, 14C17.
منابع مشابه
Topology of Nonarchimedean Analytic Spaces and Relations to Complex Algebraic Geometry
This note surveys basic topological properties of nonarchimedean analytic spaces, in the sense of Berkovich, including the recent tameness results of Hrushovski and Loeser. We also discuss interactions between the topology of nonarchimedean analytic spaces and classical algebraic geometry.
متن کاملTropical Cycle Classes for Non-archimedean Spaces and Weight Decomposition of De Rham Cohomology Sheaves
This article has three major goals. First, we define tropical cycle class maps for smooth varieties over non-Archimedean fields, valued in the Dolbeault cohomology defined in terms of real forms introduced by Chambert-Loir and Ducros. Second, we construct a functorial decomposition of de Rham cohomology sheaves, called weight decomposition, for smooth analytic spaces over certain non-Archimedea...
متن کاملBruhat-tits Buildings and Analytic Geometry
This paper provides an overview of the theory of Bruhat-Tits buildings. Besides, we explain how Bruhat-Tits buildings can be realized inside Berkovich spaces. In this way, Berkovich analytic geometry can be used to compactify buildings. We discuss in detail the example of the special linear group. Moreover, we give an intrinsic description of Bruhat-Tits buildings in the framework of non-Archim...
متن کاملUniform Structures and Berkovich Spaces
A uniform space is a topological space together with some additional structure which allows one to make sense of uniform properties such as completeness or uniform convergence. Motivated by previous work of J. Rivera-Letelier, we give a new construction of the Berkovich analytic space associated to an affinoid algebra as the completion of a canonical uniform structure on the associated rigid-an...
متن کاملNon-Archimedean analytic curves in Abelian varieties
One of the main subtleties of non-Archimedean analysis is that the natural topology that one puts on non-Archimedean analytic spaces is totally disconnected, meaning that there is a base for the topology consisting of sets which are both open and closed. This makes it difficult, for instance, to define a good notion of analytic function so that one has analytic continuation properties. Of cours...
متن کامل